

Hyperspectral at Leonardo

Ing. Alberto Sarti, CTO
Electronic, Defense and Security Sector

SIM.GA 1

SIM.GA 2

SPHYDER

2

<1995 2000 2010 2020

VIRTIS Rosetta, VEX, Dawn

VIHI - Bepi Colombo MA-MISS

SPACE (Planetary exploration)

SIM.GA 1

SIM.GA 2

SPHYDER

<1995

2000

2010

2020

VIRTIS Rosetta, VEX, Dawn

JIRAM - JUNO

VIHI - Bepi Colombo MA-MISS

GOME1 - ERS2

GOME2 - METOP

PRISMA

SHALOM

FLEX

HYPSEO

COMPACT HYP.

SPHYDER

VIRS

SIM.GA 1

SIM.GA 2

JIRAM - JUNO

VIHI - Bepi Colombo

GOME1 - ERS2

GOME2 - METOP

PRISMA

SHALOM

FLEX

SPACE (EO)

SIM.GA 1

SIM.GA 2

COMPACT HYP

SPHYDER

AVIONIC

<1995 2020 2010 2000

HYPSEO

THE FOUNDER

VIMS-V: Visible Infrared Mapping Spectrometer

- Low Mass/Power 325-1025 nm Pushbroom Hyperspectral Imager for study of composition of Saturn and Titan
- Key Technologies/Features:
 - Passively Cooled CCD focal plane
 - Spectrometry by Holografic Grating
 - Spectral Resolution 1.46 nm
 - Mass 4.5 kg. (Optical Head)

- Flying onboard CASSINI Orbiter of Saturn / Titan Mission from 1997 to 2017.
- Cassini is a cooperative project of NASA, the European Space Agency and the Italian Space Agency.

THE PRODUCT: VIRTIS and its family

- The first model of VIRTIS was developed for one of the major missions of ESA, in collaboration with ASI: the interplanetary mission Rosetta, launched in 2004 (target of the mission: Comet 67P/Churyumov-Gerasimenko).
- •Leonardo is the prime contractor, with **VIRTIS-M** responsibility the for subsystem, structure and thermal control, and system integration and test.

- •Leonardo has delivered as prime contractor other complete VIRTIS instruments (or similar-to) VIRTIS for:
 - ESA mission VENUS Express for mapping of VENUS Planet (launched in 2005)
 - NASA Mission DAWN (launched in 2007) devoted to the exploration of the two of protoplanets Ceres and Vesta.
 - NASA Mission Juno (launched in 2011) for the exploration of Jupiter
 - ESA-JAXA mission Bepi-Colombo (to be launched in 2018) for the exploration of Mercury

EARTH OBSERVATION PRISMA – SHALOM - COMPACT HYPERSPECTRAL

- Following successful deployment of scientific hyperspectral instruments for Solar System exploration, Leonardo technology has been applied to Earth Observation.
 - GOME and GOME-2 (ozone monitoring)
 - Hypseo
 - JHM with Canadian Space Agency
 - PRISMA
 - SHALOM
 - COMPACT
 HYPERSPECTRAL

Hyperspectral payload GSD vs. mass

AIRBORNE INSTRUMENTS

SIM-GA	VNIR, SWIR, PAN [400, 2500] nm	SIM-GA VNIR and SWIR + PAN hi-res camera Data acquisition and data storage (Year 2003)
SPHYDER	VNIR, SWIR, PAN [400, 2500] nm	New airborne hi-res hyperspectral system: SIM.GA evolution UAS compatibility (e.g.: FALCO). Real time processing Available 1Q-2018

AIRBORNE SERVICE EXAMPLE: PRECISION AGRICULTURE

TRIAL FLIGHTS 2014-2015

AVAILABLE SINCE 2016

DATA COLLECTION

Nutrient Mapping

Disease Detection

Weed Mapping

Yield Optimisation

Yield Prediction

Soil Brightness

Water Stress

Irrigation Scheduling

Environmental Compliance

Canopy Development

Seed Variable Zoning

In Situ Data (Storm Damage)

In Situ Data (Storm Damage)

Compaction Reports

Trials

DATA PROCSESSING & ANALYSIS

END USER KNOWLEDGE, DECISIONS 10

Example: Nitrogen Uptake Map for Wheat – Absolute

Measure Trial Field B- NERC Data 1500m - Nitrogen Map

FUTURE TRENDS

- Demand of 'large' instruments (>200 kg) is not over
 - FLEX is the latest example (to be flown in 2022), not possible to comply to the requirements (0.3 nm spectral resolution) with a small instrument
- Request for miniaturization (mega-constellations)
 - Technological effort: materials, thermal control, electronics.
- Collaborative scenario between:
 - Large satellites (Copernicus/Sentinel) and small satellites
 - Space instruments, airborne instruments and ground based assets
- Hyperspectral = big data processing
 - e.g.: Hyperspectral and SAR data fusion
- On board compression vs. selective filtering based on user needs (Multispectral on-demand)